	請	勿攜去	
	1	. 1	

Not to be taken away

數學英才精進課程

版權所有 不得翻印 Copyright Reserved

Enrichment Programme for Young Mathematics Talents

二零二四至二五年度學期科目考試

Course Final Examination, 2024-25

科目編號及名稱 Course Code & Title	: _	SAYT1134 T	owards l	Differe	ntial Geometry	
時間 Time allowed : -		2	小時 hours		30	分鐘 minutes
姓名 _{Name} :				年級 Form	:	

Instructions

- The full mark of the paper is **100 points** and bonus mark **20 points**.
- This paper consists of **Basic Part**, **Harder Part** and **Bonus Part**.
- Answer **ALL** questions in Basic Part and **FIVE** questions in Harder Part. Make your best effort to answer the Bonus Part.
- Show your work clearly and neatly. Give adequate explanation and justification for your calculation and observation.
- Write your answers in the spaces provided in the Answer Booklet. Begin each question on a new page. Clearly indicate the question number in the designated slot at the top of each page.
- Supplementary answer sheets and rough paper will be supplied on request.
- Non-graphical calculators are allowed.

Useful Formulaes:

• Trigonometry

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2 \sin A \cos B = \sin(A + B) + \sin(A - B)$$

$$2 \cos A \cos B = \cos(A + B) + \cos(A - B)$$

$$2 \sin A \sin B = \cos(A - B) - \cos(A + B)$$

$$\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}$$

• Curve curvature

$$-\kappa(t) = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} = \left\langle \frac{\mathbf{T}'(t)}{\|\mathbf{r}'(t)\|}, \mathbf{N}(t) \right\rangle$$

- For space curve: $\kappa(t) = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}$

• Space curve torsion

$$-\tau(t) = \left\langle \frac{\mathbf{N}'(t)}{\|\mathbf{r}'(t)\|}, \mathbf{B}(t) \right\rangle$$
$$-\tau(t) = \frac{\langle \mathbf{r}'(t) \times \mathbf{r}''(t), \mathbf{r}'''(t) \rangle}{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|^2}$$

- Frenet formula: $\frac{d}{ds} \begin{pmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B} \end{pmatrix} = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B} \end{pmatrix}$
- Gaussian Curvature
 - Let S be a regular surface parametrized by $\mathbf{x}(u, v)$ and K be the Gaussian curvature of S. Then

$$K = \det(d\mathbf{n}_p) = \frac{\det(II)}{\det(I)} = \frac{eg - f^2}{EG - F^2}$$

where I is the first fundamental form and II is the second fundamental form of the surface.

- For isothermal parametrization on surface with first fundamental form $I = \begin{pmatrix} E & 0 \\ 0 & G \end{pmatrix}$, the Gaussian curvature is given by

$$K = -\frac{1}{2\sqrt{EG}} \left[\left(\frac{E_v}{\sqrt{EG}} \right)_v + \left(\frac{G_u}{\sqrt{EG}} \right)_u \right].$$

• The matrix representation of differential of Gauss map $d\mathbf{n}_p$ with respect to basis $\mathbf{x}_u, \mathbf{x}_v$ is

$$d\mathbf{n}_p = -(II)(I)^{-1} = -\frac{1}{EG - F^2} \begin{pmatrix} eG - fF & fE - eF \\ fG - gF & gE - fF \end{pmatrix}$$

• Let S be a regular surface and $d\mathbf{n}_p$ be the differential of Gauss map at $p \in S$. The mean curvature of S at p is

$$H = -\frac{1}{2}\operatorname{tr}(d\mathbf{n}_p) = \frac{1}{2}\left(\frac{gE - 2fF + eG}{EG - F^2}\right)$$

Basic Part (50 points). Answer ALL questions in this part.

- 1. (a) (3 points) Which of the following is/are regular curves? Provide a short explanation. (i) $\gamma_1 : \mathbb{R} \to \mathbb{R}^2$, $\gamma_1(t) = (t^3, t^2 + 1)$; and
 - (ii) $\gamma_2 : \mathbb{R} \to \mathbb{R}^3, \ \gamma_2(t) = (t^2, 1 t^2, 1 + t^3)$.
 - (b) (7 points) Given a regular space curve $\mathbf{r} : (a, b) \to \mathbb{R}^3$ parametrized by arc length with positive curvature $\kappa(s) > 0$, for all $s \in (a, b)$.
 - (i) Show that if $\mathbf{T} + \mathbf{B}$ is constant for all $s \in (a, b)$, then

$$\kappa(s) = \tau(s)$$

for all $s \in (a, b)$.

(ii) Simplify the expression $(\mathbf{T}' \times \mathbf{N}') \cdot \mathbf{B}$.

2. (5 points) Let $\gamma : \mathbb{R} \to \mathbb{R}^3$ be a parametrized space curve defined by

$$\gamma(t) = (3t - t^3, 3t^2, 3t + t^3), \ t \in \mathbb{R}.$$

Show that

$$\kappa(t) = \tau(t) = \frac{1}{3(1+t^2)^2}$$

3. Let S be the surface parametrized by

$$X(u, v) = (uv^2, u - v, u + v), \quad (u, v) \in \mathbb{R}^2$$

and X is a smooth map.

- (a) (5 points) Compute $X_u \times X_v$. Hence, show that S is a regular surface.
- (b) (5 points) Compute the first fundamental form of X as a 2×2 matrix and the second fundamental form of X as a 2×2 matrix with respect to the unit normal vector $N = X_u \times X_v / ||X_u \times X_v||$.
- (c) (5 points) Consider the point $p = (0, 1, 1) \in S$, compute the Gaussian curvature K and the mean curvature H of S at p.
- 4. Let $\Phi : \mathbb{R}^2 \to \mathbb{R}^3$ be the inverse of the *stereographic projection* defined by

$$\Phi(u,v) = \left(\frac{2u}{1+u^2+v^2}, \frac{2v}{1+u^2+v^2}, \frac{u^2+v^2-1}{1+u^2+v^2}\right)$$

where $(u, v) \in \mathbb{R}^2$. Suppose that $B = \Phi(\mathbb{R}^2)$ is a surface.

- (a) (5 points) Compute $\Phi_u \times \Phi_v$. Hence, show that Φ is regular.
- (b) (5 points) Compute the first fundamental form of Φ as a 2 × 2 matrix.
- (c) (5 points) Hence, compute the Gaussian curvature K of B.
- (d) (5 points) Clive claims that $\Phi(u, v)$ is a parametrization for whole unit sphere centered at the origin. Do you agree? Explain your answer.

Harder Part (10+40 points).

Answer ALL True/False Questions. Answer FOUR questions in Structured Questions.

True/False Questions

5. (10 points) Mark each of the following statements "True" (meaning that it is a true statement) or "False" (meaning that there are counterexamples to the statement). Brief justification is required. Each correct answer with correct justification carries 2 points, correct answer without correct justification carries 1 point and wrong answer with/without justification carries 0 point.

(Note. You may use any results in lecture notes or tutorial notes.)

- (a) For any given smooth functions $\kappa(s), \tau(s) > 0$, there exists unique regular curve $\mathbf{r}(s)$ in \mathbb{R}^3 parametrized by arc length with curvature $\kappa(s)$ and torsion $\tau(s)$.
- (b) If S is a regular surface with Gaussian curvature K > 0 everywhere, then the curvature of any regular curves $C \subset S$ is everywhere positive.
- (c) If the Gauss map of a regular surface S in \mathbb{R}^3 is constant, then S is contained in a flat plane.
- (d) Let S_1 and S_2 be two regular surfaces. If K(p) = K(q) for any $p \in S_1$, $q \in S_2$, where K denotes the Gaussian curvature, then S_1 and S_2 are isometric.
- (e) There is a minimal surface S in \mathbb{R}^3 satisfying K(p) > 0 for some $p \in S$.

Structured Questions

- 6. (a) (5 points) A constant-speed curve with speed c is a space curve $\mathbf{r} : (a, b) \to \mathbb{R}^3$ with $\|\mathbf{r}'(t)\| = c$ for every a < t < b, where c is a positive constant. Suppose that \mathbf{r} is a regular curve, show that \mathbf{r} is a constant-speed curve *if and only if* $\langle \mathbf{r}', \mathbf{r}'' \rangle = 0$ for all a < t < b.
 - (b) (5 points) Let \mathbf{r} be a constant-speed curve with speed c, define the following two curves:

$$\boldsymbol{\alpha} : \left(-\frac{b}{3}, -\frac{a}{3}\right) \to \mathbb{R}^3 : \qquad \boldsymbol{\alpha}(t) := \mathbf{r}(-3t)$$
$$\boldsymbol{\beta} : (a, b) \to \mathbb{R}^3 : \qquad \boldsymbol{\beta}(t) := 5\mathbf{r}(t)$$

Let $\kappa(t)$ be the curvature of **r** at point *t*. Express the curvature of α and β in terms of $\kappa(t)$ and *c*.

7. Let $\mathbb{D}_n = (0, \sqrt{n\pi}) \times (0, 2\pi), n \in \mathbb{N}$ be an open connected subset in \mathbb{R}^2 .

(a) (5 points) Suppose $\Phi(r, \theta)$ for $(r, \theta) \in \mathbb{D}_1$ has the following first fundamental form:

$$I = \begin{pmatrix} 1 & 0\\ 0 & \sin^2 r \end{pmatrix}.$$

Find the Gauss curvature K for this surface.

(b) (5 points) Suppose $\tilde{\Phi}(r,\theta)$ for $(r,\theta) \in \mathbb{D}_{2024}$ has the following first fundamental form:

$$\tilde{I} = \begin{pmatrix} 1 & 0\\ 0 & 2024\sin^2\left(\frac{1}{\sqrt{2024}}r\right) \end{pmatrix}$$

Let \vec{K} be the Gauss curvature for the parametrization $\tilde{\Phi}$. Show that

$$\iint_{\mathbb{D}_1} K\sqrt{\det I} \,\mathrm{d}r\mathrm{d}\theta = \iint_{\mathbb{D}_{2024}} \widetilde{K}\sqrt{\det \widetilde{I}} \,\mathrm{d}r\mathrm{d}\theta = 4\pi.$$

- 8. (a) (3 points) State the **Gauss-Bonnet Theorem** for smooth, closed orientable surfaces in \mathbb{R}^3 . (Define the symbols you have used.)
 - (b) (2 points) Suggest a surface with Gaussian curvature $K \ge 2024$ and surface area $A = \pi/506$, then verify your answer.
 - (c) (5 points) Let S_1, S_2 be two closed orientable surfaces. Given that
 - S_1 has Gaussian curvature $K(p) \ge 1$ for all $p \in S_1$.
 - S_2 has constant Gaussian curvature 1.
 - S_1, S_2 have the same Euler characteristic.

Show that $\operatorname{Area}(S_1) \leq \operatorname{Area}(S_2)$.

- 9. Let S be a regular closed orientable surface with genus $g \ge 1$. (Note. By the Classification Theorem of compact connected surfaces in \mathbb{R}^3 , S is not homeomorphic to the sphere.)
 - (a) (5 points) Show that K attains both positive and negative values.
 - (b) (5 points) Is it necessary that S has zero Gaussian curvature at some point? Explain your answer.

10. Let X(u, v) be a smooth map from \mathbb{R}^2 to \mathbb{R}^3 . It is given that the first fundamental form of X as a 2 × 2 matrix is

$$I = \begin{pmatrix} f(u,v) & 0\\ 0 & f(u,v) \end{pmatrix}$$

where f(u, v) > 0 is a smooth function. Let M = X(D) be a surface in \mathbb{R}^3 .

(a) (5 points) Denote the Gaussian curvature of M by K(u, v). Show that

$$K(u,v) = -\frac{1}{2f} \left(\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2} \right) \ln f(u,v).$$

- (b) (2 points) Suppose that $f(u, v) = e^{-2u^2}$. Show that K > 0 for any $(u, v) \in \mathbb{R}^2$.
- (c) (3 points) Is it possible to find a *closed* connected surface in \mathbb{R}^3 under a parametrization X such that its first fundamental form is

$$I(u,v) = \begin{pmatrix} e^{-2u^2} & 0\\ 0 & e^{-2u^2} \end{pmatrix}$$

which is exactly the same as part (b)? Explain your answer.

Bonus Part (20 points). Try your best to answer the question in this part.

11. Recall that for a $n \times n$ matrix A with real entries, we denote $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ to be an eigenvector with eigenvalue $\lambda \in \mathbb{R}$ if we have

$$A\mathbf{x} = \lambda \mathbf{x}.$$

- (a) (2 points) If we have $A^k = \mathbf{0}$ for some $k \in \mathbb{N} \setminus \{0, 1\}$, determine the possible eigenvalue(s) that A might have.
- (b) Let A be a $n \times n$ symmetric matrix (i.e. $A^T = A$) with real entries such that $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n \setminus \{\mathbf{0}\}$ are eigenvectors with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$ respectively. Suppose $\lambda_1 < \lambda_2 < \ldots < \lambda_n$ and $\|\mathbf{x}_i\| = 1$ for all $i = 1, 2, \ldots, n$.
 - (i) (5 points) Prove that $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ is a linearly independent and orthogonal set. Hence, $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ forms an orthonormal basis of \mathbb{R}^n .
 - (ii) (3 points) Using (b)(i), show that for all $\mathbf{x} \in \mathbb{R}^n$, we have

$$\lambda_1 \|\mathbf{x}\|^2 \le \langle \mathbf{x}, A\mathbf{x} \rangle \le \lambda_n \|\mathbf{x}\|^2$$

- (iii) (2 points) Is (b)(ii) true for general $n \times n$ matrix A with real entries? Explain your answer.
- (c) (i) (2 points) Let A be a 2×2 matrix with real entries such that for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$, we have

$$\langle \mathbf{x}, \mathbf{A}\mathbf{y} \rangle = \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle.$$

Show that A is symmetric.

- (ii) Suppose **p** is a point on a regular surface $S \subset \mathbb{R}^3$, tangent plane $T_{\mathbf{p}}S$ with basis $\{\mathbf{X}_u, \mathbf{X}_v\}$. (As $T_{\mathbf{p}}S$ can be transformed to \mathbb{R}^2 through rotation and translation, you can replace \mathbb{R}^2 by $T_{\mathbf{p}}S$ in (b)(i) and (c)(i).)
 - (1) (3 points) Let $B_{\mathbf{p}}$ be a 2 × 2 matrix representation of the shape operator $S_{\mathbf{p}}: T_{\mathbf{p}}S \to T_{\mathbf{p}}S$ ($S_{\mathbf{p}}(\mathbf{v}) = -d\mathbf{n}_{\mathbf{p}}(\mathbf{v})$.) on **p** (which exists as $S_{\mathbf{p}}$ is linear). Using (c)(i), show that $B_{\mathbf{p}}$ is symmetric.
 - (2) (3 points) Suppose further that
 - $S_{\mathbf{p}}(\mathbf{X}_u) = \lambda_1 \mathbf{X}_u, S_{\mathbf{p}}(\mathbf{X}_v) = \lambda_2 \mathbf{X}_v$ for some $\lambda_1, \lambda_2 \in \mathbb{R}$ with $\lambda_1 \neq \lambda_2$.
 - $\|\mathbf{X}_u\| = \|\mathbf{X}_v\| = 1.$

Using (b)(i) Show that for each unit vector $\mathbf{x} \in T_{\mathbf{p}}S$, there exists $\theta_{\mathbf{x}} \in \mathbb{R}$ such that

$$\langle \mathbf{x}, B_{\mathbf{p}} \mathbf{x} \rangle = \lambda_1 \cos^2 \theta_{\mathbf{x}} + \lambda_2 \sin^2 \theta_{\mathbf{x}}.$$

- 12. (10 points) (Relaxing Game) The following puzzles consists of all Teaching Differential Geometry Teaching Assistants, please according to the lists on the right and circle all TA Names.
 - Each correct TA names carries 1 point.
 - The maximum score of this question is 10 points.

Μ	Y	Ι	Ι	0	Ι	Μ	Ι	Α	Х	Α	Ε	Μ	Μ
Ą	Ν	W	Е	Κ	R	Μ	Н	J	Α	Α	Α	W	S
Α	С	С	Х	Н	Α	Ν	Α	к	Μ	R	J	Ε	Α
Κ	Α	L	L	Н	Ι	Ι	Α	Α	0	L	κ	v	Ε
Y	L	Ι	Α	L	J	L	Κ	L	С	0	В	L	Α
Μ	Ε	V	Ν	Ε	Α	Т	Х	W	R	R	Y	Α	N
L	Х	Ε	Α	Α	С	С	Y	Е	Α	Ν	Μ	Α	Y
Κ	Μ	L	L	Н	К	J	Μ	т	Μ	Ν	W	v	Α
Y	Т	Υ	Μ	С	Y	Α	W	Н	Α	Ν	Е	v	Х
R	Ι	Α	Κ	Ι	S	Μ	Μ	0	S	Α	Α	Н	Ι
Т	Ι	R	Х	Μ	Α	Ε	Т	Μ	V	С	G	Н	R
G	Ν	Ι	Μ	Μ	Α	S	Х	Α	Т	0	В	Y	Ι
Г	Μ	Κ	W	Μ	N	Α	Y	S	Ν	S	Т	W	Κ
Ε	Ν	Ε	L	S	0	Ν	Α	G	L	v	S	Ε	Ι

2024 TDG EPYMT Teaching Assistants

Play this puzzle online at : https://thewordsearch.com/puzzle/7436054/

Figure 1: Teaching Assistant Name Puzzle

 $\sim \sim$ END OF PAPER $\sim \sim$